Exercise problem 1

Helium/Argon mixture is diffusing through a 100 nm pore at 1 bar and 25 °C. Report D_{molecular}, D_K and D_{vis} for helium at 1 bar and 10 bar. Calculate D_{total} at 1 and 10 bar pressures.

$$D_{He,Ar} = 0.7 \text{ cm}^2 \text{s}^{-1} \text{ at } 1 \text{ bar}$$

$$D_K = \sqrt{\frac{8k_B Td^2}{9\pi m}}$$

$$D_{vis} = \frac{d^2}{32\eta_1} P_1$$

$$\eta_{\text{He}} = 2 * 10^{-5} \text{ Pa s}$$

At 1 bar,

$$D_{molecular} = 0.7 \ cm^2/s$$

$$D_K = \sqrt{\frac{8*1.38*10^{-23}*298*(100*10^{-9})^2}{9*3.14*0.004/(6.022*10^{23})}} = 0.419 \ cm^2/s$$

$$D_{vis} = \frac{(100*10^{-9})^2}{32*2*10^{-5}}*10^5 = 0.016 \ cm^2/s$$

$$1/D = 1/D_K + 1/D_{molecular} \Rightarrow D = 0.262 \ cm^2/s$$

$$D_{Total} = D + D_{vis} = 0.278 \ cm^2/s$$

At 10 bar,

$$D_{molecular} = 0.7/10 = 0.07 \ cm^2/s$$

$$D_K = 0.419 \ cm^2/s$$

$$D_{vis} = 0.016 * 10 = 0.16 \ cm^2/s$$

$$1/D = 1/D_K + 1/D_{molecular} \Rightarrow D = 0.06 \ cm^2/s$$

$$D_{Total} = D + D_{vis} = 0.22 \ cm^2/s$$

Exercise problem 2: Capillary condensation

Water at 25 °C and 1 bar has a vapor pressure of 23.8 torr. Calculate the equilibrium vapor pressure in a capillary with diameter of 2 nm.

 γ_{lv} = surface tension = 0.072 N/m

 θ = contact angle = 30 degree

 $V_l = \text{molar volume} = 0.018/1000 \text{ m}^3/\text{mole}$

$$P_{sat,curved} = P_{sat,flat} \exp\left(-\frac{2V_l \gamma_{lv}}{(r/\cos\theta)RT}\right)$$

= 9.6 torr

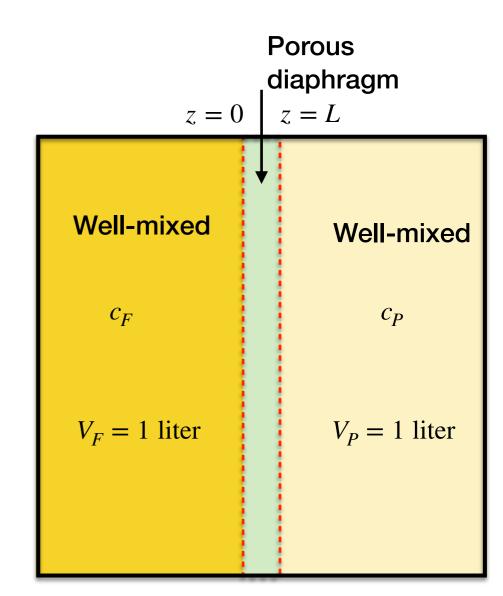
40% of the P_{sat} for flat interface

Exercise problem 3

An electrochemical cell is composed of an ion-selective membrane which separates two well-mixed compartments filled with electrolytes. You are working as a process engineer, and need to screen a newly launch membrane. To do this you decide to place the membrane in cell such that:

$$t = 0, c_{F0} = 1 \text{ M}$$

 $c_{P0} = 0 \text{ M}$


Calculate the diffusion coefficient for a membrane if

$$@t = 1 \text{ hr}, (c_F - c_P) = 0.5 \text{ M}$$

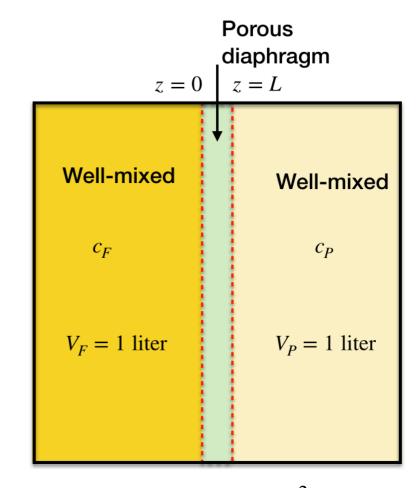
Compare above with the diffusion coefficient for another membrane when

$$t = 1 \text{ hr}, (c_F - c_P) = 0.25 \text{ M}$$

$$D = \frac{1}{\beta t} \ln \left(\frac{c_{F0} - c_{P0}}{c_F - c_P} \right) \qquad \beta = \frac{AH}{L} \left(\frac{1}{V_F} + \frac{1}{V_P} \right)$$

$$A = 1 m^2 \qquad L = 100 \ \mu m$$

$$H = 0.1 \frac{M}{M}$$


$$\beta = \frac{AH}{L} \left(\frac{1}{V_F} + \frac{1}{V_P} \right) = \frac{1*0.1}{10^{-4}} \left(\frac{1}{10^{-3}} + \frac{1}{10^{-3}} \right) = 2*10^6$$

Membrane 1

$$D = \frac{1}{\beta t} \ln \left(\frac{c_{F0} - c_{P0}}{c_F - c_P} \right) = \frac{1}{2 * 10^6 * 3600} \ln \left(\frac{1}{0.5} \right) = 9.6 * 10^{-11} \text{ m}^2 \text{s}^{-1}$$

Membrane 2

$$\frac{D_2}{D_1} = \frac{\ln(1/0.25)}{\ln(1/0.5)} = 2$$

$$A = 1 m^{2}$$

$$L = 100 \mu m$$

$$H = 0.1 \frac{M}{M}$$

